八年级下册知识点汇总(人教版八年级下册知识点归纳)
- 1 -
人教版八年级下册知识点归纳
第十六章 二次根式
1、二次根式: 形如 )0( aa 的式子。①二次根式必须满足:含有二次根号" ";被开方数 a 必须是非负数。②非负性
2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含
能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:
(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成
分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数
或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式
(1) )0()( 2 aaa
(2) aa 2
(3)乘法公式 )0,0( babaab
(4)除法公式 )0,0( baba
ba
4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被
开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的
先算括号里的。
第十七章 勾股定理
1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为
c,那么 a2+b
2=c
2。
sheji500制
版技术
- 2 -
2.勾股定理逆定理:如果三角形三边长 a,b,c 满足 a2+b
2=c
2。,那
么这个三角形是直角三角形。
3. 互逆命题:题设、结论正好相反的两个命题。如果把其中一个叫
做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理
逆定理)
4.直角三角形的性质
(1)直角三角形的两个锐角互余。°
(2)在直角三角形中,30 的角所对的直角边等于斜边的一半。
(3)如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么
a2+b
2=c
2。
(4)、直角三角形斜边上的中线等于斜边的一半
5、摄影定理:在直角三角形中,斜边上的高线是两直角边在斜边上
的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比
例中项。① BDADCD 2
② ABADAC 2 ③ ABBDBC 2
6、常用关系式
由三角形面积公式可得:ABCD=ACBC
第十八章 平行四边形
1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质:
⑴平行四边形的对边相等;
⑵平行四边形的对角相等:
⑶平行四边形的对角线互相平分。
3 平行四边形的判定:
⑴.两组对边分别相等的四边形是平行四边形;
⑵对角线互相平分的四边形是平行四边形;
sheji500制
版技术
- 3 -
A
C B
D
⑶两组对角分别相等的四边形是平行四边形;
⑷一组对边平行且相等的四边形是平行四边形。
4、矩形的定义:有一个角是直角的平行四边形。
5、矩形的性质:
⑴矩形的四个角都是直角;
⑵矩形的对角线相等。
6、矩形判定定理:
⑴ 有三个角是直角的四边形是矩形;
⑵对角线相等的平行四边形是矩形。
7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第
三边的一半。
直角三角形斜边上的中线等于斜边的一半。
(连接三角形两边中点的线段叫做三角形的中位线。)
8、菱形的定义 :有一组邻边相等的平行四边形。
9、菱形的性质:
⑴菱形的四条边都相等;
⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
S 菱形=1/2×ab(a、b为两条对角线长)
10、菱形的判定定理:
⑴四条边相等的四边形是菱形。
⑵对角线互相垂直的平行四边形是菱形。
11、正方形定义:一个角是直角的菱形或邻边相等的矩形。
12 正方形判定定理:
⑴ 邻边相等的矩形是正方形。
⑵有一个角是直角的菱形是正方形。
(矩形 菱形=正方形)
sheji500制
版技术
- 4 -
321
000.
0k
bbb
321
000.
0k
bbb
第十九章 一次函数
1.变量与常量:在一个变化过程中,数值发生变化的为变量,数值
不变的是常量。
2.函数:在一个变化过程中,如果有两个变量 x与 y,并且对于想 x
的每一个确定的值,y 都有唯一确定的值与其对应,则 x 自变量,y
是 x 的函数。
3.函数解析式:用关于自变量的数学式子表示函数与自变量之间的
关系的式子。
4.描述函数的方法:解析式法、列表法、图像法。
5.画函数图象的一般步骤:
①列表:一次函数只要列出两个点即可,其他函数一般需要列出 5
个以上的点,所列点是自变量与其对应的函数值
②描点:在直角坐标系中,以自变量的值为横坐标,相应函数的值
为纵坐标,描出表格中的个点,一般画一次函数只用两点③连线:
依次用平滑曲线连接各点。
6.正比列函数:形如 y=kx(k≠0)的函数,k是比例系数。
7.正比列函数的图像性质:⑴ y=kx(k≠0)的图象是一条经过原
点的直线;⑵增减性:①当 k>0 时,直线 y=kx 经过第一、三象限,y随 x 的增大而增大;②当 k<0 时,直线 y=kx 经过第二、四象限,y
随 x 的增大而减小,
8.一次函数:形如 y=kx b(k≠0)的函数,则称 y 是 x 的一次函数。当 b=0 时,称 y 是 x 的正比例函数。
9. 一次函数的图像性质:
⑴图象是一条直线;
(1)(2)(3)
(1)
(3)(2)
sheji500制
版技术
- 5 -
])()()[(1 2222
12 xxxxxx
nS n
k
kk
ffffxfxfxx
21
2211
⑵增减性:①当 k>0 时, y 随 x 的增大而增大;②当 k<0 时, y 随
x 的增大而减小。
10.待定系数法求函数解析式:
⑴设函数解析式为一般式;
(2)把两点带入函数一般式列出方程组,求出待定系数;
(3)把待定系数值再带入函数一般式,得到函数解析式
11.一次函数与方程、不等式的关系:会从函数图象上找到一元一
次方程的解(既与 x 轴的交点坐标横坐标值),一元一次不等式的解
集,二元一次方程组的解(既两函数直线交点坐标值)
第二十章 数据的分析
1.加权平均数:
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数
分布表求加权平均数的方法。
2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,
如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位
数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数
据的中位数。
3.众数:一组数据中出现次数最多的数据就是这组数据的众数。
4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极
差。
5.方差:
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳
sheji500制
版技术
- 6 -
定。
6.方差规律: x1,x2,x3,…,xn的方差为 m,则 ax1,ax2,…,
axn的方差是 a2 m; x1 b, x2 b,x3 b,…,xn b 的方差是 m
7. 反映数据集中趋势的量:平均数计算量大,容易受极端值的影响;
众数不受极端值的影响,一般是人们关注的量;中位数和数据的顺
序有关,计算很少不受极端值的影响。
8.数据的收集与整理的步骤:
(1)收集数据
(2)整理数据
(3)描述数据
(4)分析数据
(5)撰写调查报告
(6)交流
sheji500制
版技术
,
免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。